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ABSTRACT

Based upon the ray theory, we develop a systematic method to obtain an

equation of K-dV type with variable coefficients for the evolution of water

waves in a channel of nonuniform cross section. Examples for channels with a

nonuniform rectangular and triangular cross section are given. The fission of

solitons in a triangular channel with a shoal is studied by the inverse

scattering method and also numerically. A general Green's law for the decay

of wave amplitude in a channel with arbitrary cross section is derived.
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SIGNIFICANCE AND EXPLANATION

In this paper we propose a new equation for the study of nonlinear water

waves in a channel of variable cross section. We also use both analytical and

numerical methods to investigate the problem of a solitary wave climbing up a

shoal in the triangular channel. A solitary wave is a wave with a single hump

moving with a constant velocity. It is shown that under certain conditions

the solitary wave may split into several similar waves. Furthermore, a

general law to describe the attenuation of a wave in a channel is also

derived.
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WATER WAVES IN A CHANNEL OF VARIABLE CROSS SECTION

Xi-Chang Zhong and M. C. Shent

1. Introduction.

The K-dy equation originally derived for water waves over a uniform

bottom has been studied extensively since the inverse scattering method was

discovered by Gardner, Greene, Kruskal and Miura (1974) for the solution of

the equation. Recently there has been growing interest in K-dV equations with

variable coefficients, which appear in the study of water waves over a bottom

of nonuniform depth. The K-dr equation for a two-dimensional variable bottom

was derived by Kakutani (1971) and Johnson (1973), and that for a rectangular

channel with variable width and depth, by Shuto (1974). A review of the

recent developments regarding K-dV equations with variable coefficients may be

found in an article by Miles (1980). So far all the work on K-dy equations

for water waves over a variable bottom, one way or another, is related to the

equations for a rectangular channel, and the method of derivation cannot be

extended to channels with arbitrary nonuniform cross section. On the other

hand, the equations derived do not depend upon time explicitly, and conse-

quently an initial-value problem cannot be posed. Nevertheless, some inter-

esting phenomena have been observed from a study of these equations concerning

the effect of a perturbation on a solitary wave propagating in a channel of

variable depth. A single soliton may split into a finite number of solitons
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if the depth of the channel decreases from one constant depth to another

(Tappert and Zabusky, 1971; Johnson, 1973). Furthermore, the generation of a

shelf is observed behind a solitary wave as it propagates in a rectangular

channel with a slowly varying bottom as a perturbation about a constant

depth (Ko and Kuell, 1978; Miles, 1979; Knickkerbocker and Newell, 1980).

The purpose of this paper is to propose a general K-dV equation, which

applies to any channel with variable cross section. The method of derivation

used here is essentially a specialization of the procedure developed by Shen

and Keller (1973). Their work was motivated by the results due to Choquet-

Bruhat (1969) on ray method for nonlinear partial differential equations and

by Keller's linear ray expansion (1958) for water waves over a variable

bottom. In terms of the time variable along a ray, the K-dV equation is now

time-dependent and can be used to study initial value problems. Furthermore,

there is great flexibility at our disposal to choose the appropriate

independent variables in the K-dy equation, and a general Green's law for the

decay of wave amplitude in a channel of variable cross section is also

derived. Based upon the K-dV equation, we shall use inverse scattering method

to study the fission of solitons as a solitary wave climbs up a shoal in a

triangular channel. The results are then confirmed by numerical methods.

In Section 2 we formulate the problem and derive the general K-dV equa-

tion by means of the ray method. In Section 3 we specialize our result to the

equations for rectangular and triangular channels. The analytical and numer-

ical results for the fission of solitons in a triangular channel are given in

Section 4, where the change of the channel width or depth is considered. In

Section 5, a discussion of the results is given and the general Green's law is

derived.
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2. Derivation of the K-dV equation.

We consider the motion of an inviscid, incompressible fluid of constant

density under gravity in a channel with a boundary defined by h (x ,y .z

0, where z is positive upward (Figure 1). The governing equations are

u + v , + w =0 . (1)
x y z
* ** ** ** *

U + U U +v U + Uw u. -p ./P, (2)
t x y y x

* * * ** ** *

v +u v +v v + w v -p ./P, (3)

t x y z y
* ** ** ** *

w +u w * + v w * + w w =-p /P-g, (4)

t x y z z

subject to the boundary conditions

* ** +vl**- tz

t x y at z = n (x*.y .t*),

p = 0 (6)

** ** **

u h + v h +w h . =0 at h = 0. (7)

x y z

Here (u ,v ,w ) is the velocity, t is the time, g is the constant

gravitational acceleration, P is the constant density, p is the pressure,

and z = n is the equation for the free surface. To derive the K-dy

equation for the wave amplitude, we make the following assumptions. The

channel bottom varies slowly in the longitudinal direction and the magnitude

of the transverse velocities is much smaller than that of the longitudinal

velocity. Needless to say, within the framework of long wave approximation

different scalings used may give rise to different equations. However, in the

following we shall be only concerned with the derivation of the K-dy equation.

Based upon the assumptions of the slow variation of the channel bottom and

different orders of magnitude of the velocities in different directions, we

introduce the nondimensional variables:
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-3/2 12 (, ,Z -3/2'
t t- / (H/g -/2 (x,y,z) ( x /H, y /H, Z IH),

n = n-/H, h - h /H, p - p (PgH).

(u,v,w) - (u /(gH) 1/2 8I2v*/(gH) 1/2 1/2w/ (gH) 1/2)

3/2 _ L/H >> 1,

where L,H are respectively the longitudinal and transverse length scales.

In terms of them, (1) to (7) become

u + 8(v + w) = 0, (8)
x y z

u t + UUx + Px + a(VUy + WUz 0 ,(9)

+ uv + (Wy + )  py = 0, (10)

+ uw + 8(vw + ww ) + 8 2(p +1) =0, (11)x y zz

subject to the boundary conditions

1t + ui + 8(v - w) = 0 a (12)
X y at z = II,

p = oJ (13)

uh + 0(vh + wh ) 0 at h =0. (14)

We assume that u,v,w,p and n, as functions of t,x,y and z, also

depends explicitly upon a new variable

= 8 S(tx)

where S will be called a phase function, and that they possess an asymptotic

expansion of the form

( ,t,x,y,z,B) - 0 + a-I11 + -2 2 +  * (15)

Substitution of (15) in (8) to (14) will yield a sequence of equations and

boundary conditions for the successive approximations by equating to zero the

coefficients af the like powers of 8. The solution for the zeroth

approximation is assumed to be given, and for simplicity we assume the

following one:

(uovow O ) = 0, PO = -z, no = 0. (16)
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The equations for the first approximation are

ku +vly +w z = 0, (17)

- WUl( + 0kpl = 0, (18)

ply = Piz =  0, (19)

subject to the boundary conditions

WTI =0 (20)

at z = 0 (21)
p1  I

Vlh + Wh = 0 at h =0, (22)

where k = Sx , W 
= -St • It is obtained from (19) that p1  is a function of

t,t and x only. We express

p1 = A( ,t,x), (23)

and from (17) and (18), it follows that

v + = -A k2 /w. (24)
ly lz

Upon integrating both sides of (24) over a cross section D of the fluid

domain for constant x, making use of divergence theorem and (20) to (22), we

obtain

A&[k 2a(x) - w2 b(x)] = 0, (25)

where a(x) is the area of D and b(x) is the width of D in the plane

z = 0. Assume that A is not identically zero, then (25) implies

kG(x), G(x) = ±[a(x)/b(x)] '2, (26)

where a(x)/b(x) is the mean depth of the cross section D. Equation (26) may

be solved by means of the method of characteristics (Courant and Hilbert,

1962) and the corresponding characteristic equations are

dt/do = p, dx/da = pG(x), dk/do = -kpG'(x) J (27)

dw/dO = dS/dV = 0,

where p is a proportionality factor. The solutions of (27) determine a one-
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parameter family of bicharacteristics, called rays,

t = t(o,1), x = X(a 1 ),

where 01 is constant along each bicharacteristic. We may choose P = 1 so

that 0 = t and x = x(t, 1). We also note that as seen from (27) both w

and S are also constant along a bicharacteristic.

The equations for the second approximation are

ku2 +v +w + u = 0, (28)V~2y W2z Ix

-W u 2 1 + kUlu1 + vlly + WlUlz + kP2 + ult + pix = 0, (29)

P2y = v' (30)

P2z = W w , (31)

subject to the boundary conditions

-12 + k u11 - w2 - Wlz 1 + Dit = 0 (32)P2 at z 0, (33)

v2 hy + w2 hz = - uihx  at h = 0. (34)

Differentiating (30) and (31) in turn with respect to y and z , adding and

making use of (17) and (18), we obtain

v2P 2 = -k 2 • (35)

It also follows from (20) to (22), (30) and (31) that

P2z = at z = 0 (36)

P2yhy + P2zhz =0 at h = 0. (37)

We may define

P2 P + A2 ' (38)

where

= (t,x,y,z), A2 = A2 (,t,x).

By (35) to (38), * satisfies

2 2
k ,(39)

Oz 2 at z = 0, (40)
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h + h = 0 at h 0. (41)
yy zz

Equations (39) to (41) pose a Neumann problem for * , and the condition of

solvability is seen to be satisfied as a consequence of (26). In terms of

0 and A, we may determine (ul, vl, w I ) by integrating (18), (30) and

(31), and assuming (ul,vl,wl) + 0, p +lPl + 0 as F + 0. This implies

(u1, v11 wi) = C-1 (kP11 - y Pl' -0zP1& ) . (42)

We remark here that other boundary conditions could be prescribed and the

final equation for A would be inhomogeneous.

Now we are in a position to derive the K-dV equation for A. From (28)

and (29),

V2y + W2 z  (k/w)(kp2 + ku 1u1& + vUly Uz Ut Plx

(43)

Upon integrating both sides of (43) over a cross section D, making use of

(26), (32) to (34) and (38) to (42), we finally obtain

moA t + mI A +mA+ m3AA + m4A& = 0, (44)

where

m0 =2b(x), m1 = 2 a(x)/G(x),

m2 = -(G- (x)f hx(h2 + h2 ) -/2ds - G 2 (x)G'(x)a(x), (45)
L y z

m3 =-- 1[1y(t,XY 2 ,0) - y(t,x,y,O)] + 3k G- 1(x)b(x)

m4 = W-1 ff (V) 2 dy dz,
D

f hx (h + ) 1/2 ds is the line integral along the boundary h = 0 in
L x
the cross section D (Figure 1), (hx, hy, hz ) is in the outward normal

direction to the boundary h = 0 and Y2 - yl = b(x). The detailed

derivation of (44) is deferred to the Appendix. As seen from (26) and (27),

along a ray
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d/dU 3 /at + (dx/dt a/ax = /at + G(x) a/ax

we express (44 in terms of 0 and as

2b(x)A a+ m2A +m AA +m 4A =0 ,(46)

which may be used to pose an initial value problem by prescribing initial data

at 0=0.



3. Special cases.

In this section we shall explicitly derive the K-dV equations for

rectangular and triangular channels with variable cross section, and show that

all previous results are special cases of (44).

Case 1. Rectangular channel with variable cross section.

Assume that the two vertical walls of the rectangular channel are given

by y = -b1 (x), y = b2 (x) and the depth by z = -d(x), (Figure 2). We also

let b(x) = [b2 (x) + b1 (x)]. The area for each cross section is a(x) =

b(x)d(x) and G(x) = ±dl/2(x). To be definite, hereafter we shall only

consider the plus sign for G(x). It is easy to obtain from (45) that

m 0 = 2b(x), mi = 2b(x)d 12 (x), (47)

m2 = b'(x)d/2 (x) + d 1/2 (x)d'(x)b(x)/2.

To determine m3 and m4 , we need to find * satisfying

2 k2 ,

= atz = 0 at z = -d(x),= ztz = 0 #z

*y 0 at y = -b1 (x), y = b2 (x).

It is easily seen that O = k 2(z + d), Oy = 0 where k 2d = W2  Hence, by

(45) again we have

m 3 = 3k d" 1/2 (x)b(x), m4 = b(x)d3 (x)k 4 /(3w). (48)

Now we go back to the characteristic equations (27). By integrating

dx/dt = G(x) = di/2(x), the equations for rays are

Jx G1(x)d = t - to , (49)

x0

where (t0 , x0 ) is the initial position of a ray. We choose x= 0 and

prescribe S = -t on x = 0, then since S = constant along each ray, we

have

S - -t o = -t + fx G 1 (n)dn. (50)

0

-10-



z

y=xb ) y=b 2 Wx

x

z =-d W)

Figure 2

A cross section of the rectangular channel



For this choice of S, S is time-like, and we obtain from (50) that

w= 1, k = G -(x) = d-1/2 (x). (51)

It follows from (44), (47), (48) and (51) that

2At + 2d/2(X)AX + d- /2(x)[b'(x)b-1 (x)d(x) + d'(x)/2]A (52)

+ 3d-1 (x)AA + d(x) A t/3 = 0.

If we set At = 0 and assume that the channel is symmetric with respect to

the plane y = 0, then apart from some scaling factor (52) reduces to the

equation by Shuto (1974), and to that by Kakutani (1971) and Johnson (1973)

when b'(x) = 0. In terms of G as the time along the ray, (52) becomes

2A0 + d-1/2 (x)[b'(x) b- (x)d(x) + d'(x)/2]A

(53)

+ 3 d- 1x)AA + d(x)A /3 = 0

where x is related to 0 and F by (50)

6-1 = -0+ fx d- 1/2 (Mdn•

0
Case 2. Triangular channel with variable cross section.

The two sides of a cross section D of the triangular channel are given

by z = - 1(x)y - d(x), z = p2 (x)y - d(x) where Pi(x) = d(x)/bi(x),

i = 1,2 (Figure 3). The area of D is b(x)d(x)/2 and G(x) = dl/2(x) /2.

We find from (45) that

m0 = 2b(x) = 2[b 1 (x) + b2 (x, m = rd2(x)b(x),

m2 = id /2 (x)[b(x)d(x) + 
d'(x)b(x)/2]/2. 

J
It is also easy to verify that

= (k2/4)[y 2 + (z + d(x))2], (55)

satisfies (39) to (41). Hence, by (45) and (55),

-12-
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m3 - (5/2) d" 1/2 kb,

(56)

m4  (-2 d (x)k3/16) Ebd3 + d(b3+ b3 )/3.
1 2

If S is given by (50), then (46), (51), (54) and (56) imply

2A0 + r2 d - /2 (x)[b(x)b- (x)d(x) + d'(x)/2]A/2 + 5d '(x)AA

(57)

-1 2 2
+ [d(x)/4 + (d- lx)/12)(b1 Cx) - b1 1(xlb 2 1Cx) + b2 (x)ll 

= 0

where W 1, k 2 d- /2 and x is related to 4 - OS and a by (50).

-14-



4. Fission of solitons.

We consider a symmetric triangular channel with a cross section defined

by

b(x) = b0 , d(x) = d0 , x 4 xI

= bI  = d, x ;0x2,

where b0 , bl, do, di are constants and there is a transition zone in x 1

x x For this problem, we may use x to replace 0 as a variable along

a ray. By (27),

dx/dO =(x) = d 1/2 (x)//2

and the K-dV equation for a triangular channel (57) may be expressed as

Ax + (1/2 )[b'(x)bl (x) + d'(x)(2d(x))-1]A + (5ri/2)d-3/2(x)AA (58)

+ [r2/96)d - 2 (x)[b (x)dl (x) + 12d(x)]A 0,

where b1 (x) = b2 (x) for a symmetric channel. We set

A = A b"2 (x) d'4(x) (59)

and it follows from (58) that

* + 52/2)d7/4 (x)b-1/2 (x)A*A + ( 2/96)d-12 (x)b 2(x)d-l(x) (60)Ax

+ 12d(x)JA =0.

Let us now consider a solitary wave moving from x -6 toward x = +0

as a progressive solution of (60) for b(x) = b0 , d(x) do . We would like

to find the conditions under which fission of solitons may take place after

the solitary wave moves into the section where b(x) - bl, d(x) = dI . The

basic ideas used in our approach are essentially due to Tappert and Zabusky

(1971), Johnson (1973) and Miura et. al. (1974). Assume that both d(x) and

b(x) are constant, and we transform (60) to the standard form of the K-dV

equation

-15-



U¢ + 6UU t + U 0 (61)

by introducing

U = p A*/q, C=qx/6 , (62)

where

p = (SV2/2)d-7/4(x)b- 1/2 x), q/6 = (62/96)d-1/2 (x)(b 2 (x)d-(x) + 12d(x)].

(63)

A progressive wave solution for U is given by

U - (c/2)sech 2c) 1/2 (- cC)/2]. (64)

In other words, if we prescribe U at C = 0 in the form of (64), then U

will be a solution for all t. Suppose that the transition of the channel

takes place at x = x = 0, and we prescribe

* * 2
A =A 0 sech at at x - 0, (65)

and from (59), * -1/2 .o1/2 2
A Ab0 d 02sech2 at at x = 0.

Then

U - (p0A /q0 )sech
2 Qt at 0, (66)

where
=o 7s )o/4o 1/2 qo6 9 o1/2 2 -1
0  , = (b0d0  + 12d0 ). (67)

In comparing (65) with (64), A and a must satisfy the following conditions

p0A0/q0= c/2, c/2 - a

so that (65) is the initial condition for a progressive wave solution of (61)

with p0 ' q0  given by (67). It follows that

p A /(2q )
0 2 1. (68)

After the solitary wave moves into the section of the channel with b(x)

= bl, d(x) - di, we assume that the K-dV equation (61) with (63) given by

, 6d7 4b2 1/2 2 -1
p = 1 1 q 1/6 - (//96)d7/ 1bd 1  + 12d], (69)

-16-



could be solved by the inverse scattering method (Muira et. al., 1974) and

consider the eigenvalue problem

d 2*/d 2 + (U(0, ) + X)* = 0, (70)

where, by (62) and (65),

U(0,t) = (pIA;/ql)sech20.

It follows from the known results (Landau and Lifschitz, 1958; Johnson, 1973;

Muira et. al., 1974) that U will consist of n solitons for large x if

P A /(q a 2  n(n+1), n - 112,, 71

/ = m, m = ,2,o,n , }
and the amplitude for the mth soliton is given by

U m - mM = 1.2,06-,n
a a

and by (62) and ( 'O
* *2

Am = q Un/p, = 2A0m /n(n+1), m = 1,2,---,n. (72)

By eliminatiig AI/Q 2  from (68) and (71), we obtain

piq 0/q1p0 = n(n+1)/2, n = 1,2,000 (73)

which yields a relationship among b0 , do, b, and dI for the fission of

n solitons to take place Making use of (67) and (69) and letting £ i = bi/di,

i - 0,1, we may express (73) as

[2c + 12)/1£ + 1211 ) (dl/do)11/4 = n(n+l)/2, n = 1,2, ° o° . (74)

In the following we consider three special cases upon which our numerical

results will be based.

(1) £0 = CI .

From (74), we obtain
-4/1 1

d = [n(n+l)/2] n = 1,2,* * (75)

It is clear from (75) that d1/d0  must be less than one for the fission of

n > I solitons to take place.

-17-



(2) do = d,

(74) now yields

[(b0 /d0 )2 + 123(b 1/d0)2 + 121 (bI/b) - 1 2- n(n+l)/2 , n = 1,2,3,0 ° ° . (76)

For simplicity, assume b0 = d0 = 1. Then from (76), we obtain

13h 2 (12 + b ) = n(n+l)/2, n = 1,2,3,-** (77)
1 1

Since the left hand side of (77) is a monotonically decreasing function of

b, and equal to one as b, = 1, all the roots of (77) must be less than one

as n > 1. Hence, the fission of solitons occurs when b1 < 1.

(3) b0 = bI .

We have from (74) again that

[(d 0/b 0)-2 + 12] [(d /b 0 )-2 + 12]- 1(d/d 0)-9/4 = n(n+1)/2.

Assume b0 = d0 = 1. Then it follows from the above equation that

-1/4 2-1
13d (12 + d F = n(n+1)/2, n 1,2,3, °  

. (78)

Equation (78) also shows that d1 < 1 is a necessary condition for fission to

take place.

There are now several numerical methods available for the solution of the

K-dV equation. Since the physical models described by the K-dV equation

represent situations requiring computations for large time, any numerical

method proposed must meet at least two requirements. First, the method must

yield sufficiently accurate wave amplitudes for many time steps in the process

of computation. Secondly, since the position of a wave front is just as

important as the wave amplitude, the proposed method must be capable of

predi't.in. lihe position of a wave front with minimal error. The first

requiremunt is easy to meet, if the method is conservative (Richtmeyer and

Morton, 1967). However, it is much more difficult to meet the second

requirement. In order to compare results, we shall use the partially

-18-



-- 1-

corrected second-order Adams-Bashforth scheme as well as the Hopscotch scheme

to solve (60) numerically for the three special cases considered before, and

we use n = 3 for all cases.

(1) EO  = C I

The depth of the triangular channel is defined by 4

d , x4 x = 0,

d(x) - (2/3)(df-d 0 )(x 2 ) 3(x)
3 + (1/3)(d -d 0)(x2 ) 2(x) 2 + do, x x 4 x2 ,

1 diI , x ), x2 #

where we choose b. = do = 1, x2 = 0.01. From (75), we have d1 = 0.5212.

For x 4 xl, (60) becomes

A + (5V2/2) p*A+ (13 /96)A = 0. (79)
x U

We prescribe, at x = 0,

A = A sech 2at. (81)0

Then by (67) and (68), we have

02 2/20.
20 / = 13 / (82)

It follows from (72) that the amplitudes of the three solitons are given by

A 13m 2 2/120, m - 1,2,3.
m

If we choose A0 = 1, then 2 = 20/13, and

A = 1/6, A2 = 2/3, A3  3/2.
123

The numerical results are shown in Figure 4.

(2) d0 = di .

We define the width of the triangular channel by

b0 , x x = 0,

b() = (2/3)(b -b 0)(x2 )3 (x)3 + (1/3)(b -b0 )(x 2) -2(x)2 + boo x x x2

b, x x 2

-19-
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where we also choose b0 = d = 1, and x2 
= 0.01. We obtain from (77)

that b1 = 0.0326. The K-dV equation for x < 0 is still (79). If we prescribe

(1wih * 2
(81) with A0 = 1, a = 20/13 again, the amplitudes of the solitons are

still given by (83) as shown in Figure 5.

(3) b0 - b1 .

The depth function d(x) is the same as in (1) with b0 = do = 1. From

(78) dI 
= 0.3824. The amplitudes of the solitons remain the same, and the

* 2
results are shown in Figure 6 if we choose A = 1, a = 20/13.

We note that the approximate method used here although confirmed by the

numerical results, is still formal and its accuracy may depend upon the size

of the transition zone. In a subsequent study we shall justify this method

and show that, if Ix2 - x1l is sufficiently small, the solution obtained by

the inverse scattering method is indeed an asymptotic approximation to the

exact solution.
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§5. Discussion.

In the derivation of the K-dV equation, we transformed the tx-

coordinates to the 0,01-coordinates. We choose 0 = t, 01 = S since S is

constant along a ray. Consider a simple smooth curve G: to = t0 (s), x0

x0 (s), -0 < s < 0 in the t,x-plane, where we may identify S with s.

Then by (49), S, as a function of t and x, is determined implictly by

fx G-I(n)dn = t - t 0(S). (84)

xo(S)

The Jacobian of transformation from the t,S-coordinates to the t,x-

coordinates is

s()tx = x/3 s = G(S)[G1 (x0 ) dx0/dS - dt 0/dS].

Hence, J * 0 if dx 0/dt0 * G(x 0 ) where we assume G(S) > 0, and it follows

that the rays do not intersect each other if C has no characteristic direction.

Now we turn to (53) and (57). If we prescribe A as a function of x at

0 = 0, we have to change x to & according to (50) where S = 8-I. An

alternative is to prescribe S - x at t - 0. Then by (84), S is

determined implicitly by

fx G- 1 rndn = t.

S
In this case S is space-like and

W = G(S), k - G(S)/G(x). (85)

By (44), (48) and (85), we have

2A0 + - 2 (xlb'x)b- (x)d(x) + d'l(x)/2]A + 3d 1/ (S)d-I(x)AA

+ d(x)d 5/2(S)A /3 = 0,

for a rectangular channel, and by (44), (54), (56) and (8 ), we obtain

2AO + vd- 1/ (x)[b, x)b (x)d(x) + d'(x)/2]A/2

+ 5 d- (x)dl/2 (S) AAt + d3/2 Sl[d- (x)b 2(x) + 12d(x)]A M/48 0,

for a triangular channel. In both cases, the initial data can be explicitly

expressed in terms of B-15.

-24-



In this work, we only consider the drivation of the K-dV equations. If

we linearized the governing equations, and carried out the ray mthod, we

would get the same Hamilton-Jacobian equation (26) and the following equation

would hold:

moAt + m1A x + M 2A = 0, (86)

where m0 m1 and m2 are given in (45). Along each ray, we may use x again

as a variable and (8) assumes the form.

2b(x)G(x)Ax + m2A = 0 (87)

by (27) where dx/dt = G(x). It follows from (8 ) that

dAexp fx()2b)G(t))
1  = 0,

along a ray, and

A = A0 exp[-fx m 2 (&)(2b(E)G(&))-1d&J, (88)
x0

where A0  is the value of A at x = x0, and

m2(&) = -G-1 (&) f h (t,y,z)(h 2 (,yz) + h2 (C,y,z))- 1/2ds
L y z

-2 ( )G'(t)a(t).

Note that the attenuation factor in (88) only depends upon the geometry of the

channel and may be considered as a generalization of the so-called "Green's

law" for amplitude decay (Lamb 1932). For rectangular and triangular

channels, we obtain from (47), (51), (54) and G(x) = d/2(x)//2 for a

triangular channel that the same Green's law holds:

A = A0 b 2 (x)d- 14 ,

which is essentially (59).
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APPENDIX

We integrate both sides of (43) over a cross section D (Figure 1). By

using divergence theorem, (32) and (34), we have

ff (v  + w2 )dydz 1-u h (h2 +h 12 ds + dfY2y

v 2 u22=0

= -u, f h (h2 +h2 ) 1/2ds + f 2 [-ap 2 C + kulIn1& - Wlz li + nit) =Ody
r y zY

= -If (k/w)(kp 2 + kU lu + ult + Pk ) + U Ix]dtdz
D

where yly = Ulz = 0. Now we make use of (21), (23), (26) and (38) to (42) to

compute the coefficients mo to m4 in (44).

m = b(x) + k2a(x)/w 2 = 2b(x),

m I = 2(k/W) a(x) = 2a(x)/G(x),

=-(k/W) I h (h2 + h2)- /2ds + (k/a)(k/w)ta(x) + (k/w) a(x)
T x y zx

-G 1 (x) f hx(h + h2 )- /2 ds G 2 (x)G'(x)a(x),F Y z

where (k/) t = [G-1(x)]t = 0 ,

m3 = (k2 /W)b(x) + w-I fY2 zz (t,x,y,0)dy + (k 1W )a(x)
Yl

- 2kG-1 (x)b(x) + w 2[k2 _ yy (t,x,y,O)]dy

y I

- 3kG l(x)b(x) - w-l[#(t, ) - (t,Xl,0)].

M4 = W f #(t,x,y,0)dy - (k2/W) If *dydz
Yl D

'W fY2 #(t,x,y,0)dy - -I ff * V2 dydz
Yl D

= f fY2 f(t,x,y,0)dy - w-'IY22p(t,x,y,o)dy + -If (V*)2dydz
Yi Yl D

-1 ff (V*)2 dydz

D
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